RUS | ENG | All
Enter the email or login, that you used for registration.
If you do not remember your password, simply leave this field blank and you will receive a new, along with a link to activate.

Not registered yet?
Welcome!

2021-02-17 15:20:00

LOW CARBON NUCLEAR POWER

LOW CARBON NUCLEAR POWER

WNN - 15 February 2021 - Low-carbon technologies are more competitive than the fossil fuel options for electricity generation, which is good news for governments wanting to move towards low-carbon systems. But electricity is not the end of the story, says Dr Henri Paillere, head of the Planning and Economics Studies Section of the International Atomic Energy Agency (IAEA).

The following is an abridged version of his presentation at Westminster Energy Forum's webinar last week, Materiality of Nuclear for Global Net Zero.

"Decarbonising the power sector will not be sufficient to achieving net-zero emissions. We also need to decarbonise the non-power sectors - transport, buildings and industry - which represent 60% of emissions from the energy sector today. The way to do that is: electrification with low-carbon electricity as much as possible; using low-carbon heat sources; and using low-carbon fuels, including hydrogen, produced from clean electricity.

The International Energy Agency (IEA) says that: 'Almost half of the emissions reductions needed to reach net zero by 2050 will need to come from technologies that have not reached the market today.' So there is a need to innovate and push the research, development and deployment of technologies. That includes nuclear beyond electricity.

Today, most of the scenario projections see nuclear's role ONLY in the power sector, but increased electrification will require more low-carbon electricity, so potentially more nuclear. Nuclear energy is also a source of low-carbon heat, and could also be used to produce low-carbon fuels such as hydrogen. This is a virtually untapped potential.

There is an opportunity for the nuclear energy sector - from advanced reactors, small modular reactors, and non-power applications - but it requires a level playing field, not only in terms of financing today's technologies, but also in terms of promoting innovation and supporting research up to market deployment. And of course technology readiness and economics will be key to their success.

On process heat and district heating, I would draw attention to the fact there have been decades of experience in nuclear district heating. Not well spread, but experience nonetheless, in Russia, Hungary and Switzerland. Last year, we had two new projects. One floating nuclear power plant in Russia (Akademik Lomonosov), which provides not only electricity but district heating to the region of Pevek where it is connected. And in China, the Haiyang nuclear power plant (AP1000 technology) has started delivering commercial district heating. In China, there is an additional motivation to reducing emissions, namely to cut air pollution because in northern China a lot of the heating in winter is provided by coal-fired boilers. By going nuclear with district heating they are therefore cutting down on this pollution and helping with reducing carbon emissions as well. And Poland is looking at high-temperature reactors to replace its fleet of coal-fired boilers and so that's a technology that could also be a game-changer on the industry side.

There have also been decades of research into the production of hydrogen using nuclear energy, but no real deployment. Now, from a climate point of view, there is a clear drive to find substitute fuels for the hydrocarbon fuels that we use today. In the near term, we will be able to produce hydrogen with electrolysis using low-carbon electricity, from renewables and nuclear. But the cheapest source of low-carbon power is from the long-term operation of existing nuclear power plants which, combined with their high capacity factors, can give the cheapest low-carbon hydrogen of all.

In the mid to long term, there is research on-going with processes that are more efficient than low-temperature electrolysis, which is high temperature steam electrolysis or thermal splitting of water. These may offer higher efficiencies and effectiveness but they also require advanced reactors that are still under development. Demonstration projects are being considered in several countries and we at the IAEA are developing a publication that looks into the business opportunities for nuclear production of hydrogen from existing reactors. In some countries, there is a need to boost the economics of the existing fleet, especially in the electricity systems where you have low or even negative market prices for electricity. So, we are looking at other products that have higher values to improve the competitiveness of existing nuclear power plants.

The future means not only looking at electricity, but also at industry and transport, and so integrated energy systems. Electricity will be the main workhorse of our global decarbonisation effort, but through heat and hydrogen. How you model this is the object of a lot of research work being done by different institutes and we at the IAEA are developing some modelling capabilities with the objective of optimising low-carbon emissions and overall costs.

This is just a picture of what the future might look like: a low-carbon power system with nuclear lightwater reactors (large reactors, small modular reactors and fast reactors); solar, wind, anything that produces low-carbon electricity that can be used to electrify industry, transport, and the heating and cooling of buildings. But we know there is a need for high-temperature process steam that electricity cannot bring but which can be delivered directly by high-temperature reactors. And there are a number of ways of producing low-carbon hydrogen. The beauty of hydrogen is that it can be stored and it could possibly be injected into gas networks that could be run in the future on 100% hydrogen, and this could be converted back into electricity.

So, for decarbonising power, there are many options - nuclear, hydro, variable renewables, and fossil with carbon capture and storage - and it's up to countries and industries to invest in the ones they prefer. We find that nuclear can actually reduce the overall cost of systems due to its dispatchability and the fact that variable renewables have a cost because of their intermittency. There is a need for appropriate market designs and the role of governments to encourage investments in nuclear.

Decarbonising other sectors will be as important as decarbonising electricity, from ways to produce low-carbon heat and low-carbon hydrogen. It's not so obvious who will be the clear winners, but I would say that since nuclear can produce all three low-carbon vectors - electricity, heat and hydrogen - it should have the advantage.

We at the IAEA will be organising a webinar next month with the IEA looking at long-term nuclear projections in a net-zero world. That will be our contribution from the point of view of nuclear to the IEA's special report on roadmaps to net zero that it will publish in May."

-----


Earlier:

LOW CARBON NUCLEAR POWER
2021, January, 27, 14:10:00
GLOBAL ECONOMY WILL UP 5.5%
The global economy is projected to grow 5.5 percent in 2021 and 4.2 percent in 2022.
LOW CARBON NUCLEAR POWER
2021, January, 27, 14:05:00
GLOBAL GAS DEMAND WILL UP BY 2.8%
Global natural gas demand is projected to increase by 2.8% in 2021 (about 110 bcm), thus reaching slightly above its 2019 level.
LOW CARBON NUCLEAR POWER
2021, January, 27, 13:50:00
NUCLEAR + HYDROGEN ENERGY
Existing nuclear technology could already produce hydrogen at below USD2 per kg, and a new generation of advanced small modular reactors could achieve the 90 cents per kg target price potentially by 2030.
LOW CARBON NUCLEAR POWER
2021, January, 26, 12:00:00
CLIMATE RISKS AND ADAPTATION
As we aim to exit the COVID-19 pandemic and the economic crisis it has triggered we must face a greater threat – that of a changing climate.
LOW CARBON NUCLEAR POWER
2021, January, 22, 11:05:00
GLOBAL HYDROGEN DEMAND UPDOWN
Global hydrogen demand is currently dominated by the refining and ammonia production industries that primarily use natural gas as a feedstock.
LOW CARBON NUCLEAR POWER
2020, December, 18, 11:55:00
GLOBAL COAL DEMAND WILL UP 2.6%
A global economic recovery in 2021 is expected to drive a short-lived rebound in coal demand following the major drop this year triggered by the Covid-19 crisis,
LOW CARBON NUCLEAR POWER
2020, December, 10, 11:40:00
NUCLEAR ELECTRICITY COSTS WILL DOWN
The cost of electricity from new nuclear power plants remains stable, yet electricity from the long-term operation of existing plants constitutes the least cost option for low-carbon generation.
All Publications »
Tags: NUCLEAR, CARBON, CLIMATE